
Peeler: Profiling Kernel-Level Events to Detect
Ransomware

Abstract—Ransomware is a growing threat that typically op-
erates by either encrypting a victim’s files or locking the desktop
screen of a victim’s computer until the victim pays a ransom.
However, it is still challenging to detect timely such malware with
existing traditional malware detection techniques. In this paper,
we present a novel ransomware detection system, called “Peeler”
(Profiling kErnEl -Level Events to detect Ransomware). Peeler
deviates from the use of signatures for individual ransomware
samples and relies on common and generic characteristics of
ransomware depicted at the kernel-level. Analyzing diverse ran-
somware families at the kernel-level, we observed ransomware’s
inherent behavioral characteristics such as file I/O request
patterns, process spawning, and causality relationships among
kernel-level events. Based on those characteristics, we develop
Peeler that continuously monitors kernel events of a target system
and detects ransomware attacks on the system. Our experimental
results show that Peeler achieves more than 99% detection rate
with 0.58% false-positive rate against 43 distinct ransomware
families, containing samples from both crypto and screen-locker
types of ransomware. For crypto ransomware, Peeler detects
them promptly after only one file is lost (within 115 milliseconds
on average). Peeler utilizes around 4.9% of CPU time with only
9.8 MB memory under the normal workload condition. Our
analysis demonstrates that Peeler can efficiently detect diverse
malware families by monitoring their kernel-level events.

I. INTRODUCTION

Ransomware is a class of malware that has significantly
impacted enterprises and consumers. The goal of such type
of malware is to obtain financial gain by holding a vic-
tim’s system or resources as a hostage through encrypting
the victim’s files (called crypto ransomware) or locking
the victim’s desktop screen (termed as screen-locker
ransomware). Recent statistics of ransomware shows that in
the first three quarters of 2019, 151.9 million ransomware
attacks were launched targeting enterprises and consumers [1],
[2]. The average payment to release files to the victims spiked
to $84,116 in the last quarter of 2019, more than double what
it was in the previous quarter [3]. In 2019, the U.S. alone
was hit by an unprecedented barrage of ransomware attacks
that impacted more than 966 government agencies, educational
institutions, and healthcare providers at a potential cost of
around $7.5 billion [4]. As such, ransomware represents one
of the most visible threats to enterprises as well as users.

Therefore, a large number of proposals have recently been
proposed to fight against ransomware as follows: machine
learning models (e.g., [5], [6], [7], [8], [9], [10], [11]), use of
decoy files (e.g., [12], [13], [9]), and file I/O pattern profiling
(e.g., [14], [15], [16], [17], [18], [19], [11], [20], [9], [21]).

However, these techniques have at least one of the following
limitations: 1) late detection after several files have already
been encrypted, or the computer has been locked [15], [12],
[22], [16], [11]. For instance, REDFISH [14] detects the
ransomware activity when ten files are lost, and the detection
time took around 20 seconds. Similarly, CryptoDrop [16]
detects ransomware when ten files are lost. RWGuard [12]
took 8.87 seconds on average to detect all malicious processes
spawned by ransomware. 2) Most approaches rely on either
rule-based detection methods (e.g., [15], [16]) or machine
learning models (e.g., [12], [15]). Since each approach has its
own advantages and disadvantages, we need to consider both
approaches to build a practical ransomware detection system.
3) Most approaches mainly focus on crypto ransomware
detection [12], [14], [16], [22] alone, while there are only a few
approaches (e.g., [15]) that explicitly consider screen-locker
ransomware. However, we need to consider both types of
ransomware simultaneously because any type of ransomware
attack can be launched in the real-world.

To address the shortcomings identified above, we develop a
novel ransomware detection system, called “Peeler” (Profiling
kErnEl -Level Events to detect Ransomware), which monitors
kernel-level events and identifies suspicious event patterns
generated by ransomware samples. Unlike existing approaches
that rely on either rule-based detectors or machine learning
models, Peeler is based on a hybrid approach that leverages
both approaches to improve the detection time and detection
accuracy at the same time. To achieve this goal, we intensively
analyzed the system behaviors of both crypto and screen-
locker ransomware and developed generic rules and features
to detect both types of ransomware accurately. Consequently,
unlike previous studies [15], [16] using high-level file I/O
activities that should be translated from kernel-level file I/O
events, we just used kernel-level file I/O events directly to
distinguish crypto ransomware from benign applications. The
suspicious file I/O event patterns are represented in regular
expressions to detect crypto ransomware promptly. Besides,
unlike existing approaches that rely on raw frequency features
of several system-level events without analyzing their relation-
ships, we analyzed ransomware samples’ process properties
and causality relationships among various kernel-level events
generated during their execution to extract key features to build
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a machine learning model.
Peeler exploits the following three distinguishable charac-

teristics between ransomware and benign applications: 1) In
most crypto ransomware samples, we can find specific file
I/O access patterns that are likely to appear to overwrite or
delete user files. We observe that most ransomware families
follow one of the four file I/O access patterns that could
be exploited for detection. 2) Some ransomware samples
spawn a large number of descendent processes while en-
crypting user files or locking desktop screens. Peeler captures
such phenomena to detect ransomware attacks. 3) There are
strong causal relationships between certain system events.
For example, file I/O’s Read and Write events are strongly
correlated during ransomware execution because all the Read
events are followed by the Write events in order to create
an encrypted version of users’ files. Such characteristics are
exhibited in events from other providers as well, such as
Process provider’s Start and Stop and DLL Image provider’s
Load and Unload events, respectively. In consequence, the
relationships between those events could be exploited via
extracting features for machine learning models that could
then perform detection. Peeler exploits the above mentioned
characteristics by investigating a diverse set of ransomware
samples. Using the key characteristics, we develop a fast and
highly accurate ransomware detection system for Windows
operating systems (OS)1.

Our key contributions are summarized below:

• We analyze key characteristics to distinguish the system
events of ransomware from those of benign applications
and design a fast and highly accurate ransomware detec-
tion system, called Peeler, based on those characteristics.
Peeler uses file I/O event patterns, and two classification
models with 13 system behavior features to achieve both
fast detection and high detection accuracy.

• We evaluate the detection accuracy of Peeler against 206
samples from 43 ransomware families containing both
crypto ransomware and screen-locker ransomware. Over-
all, Peeler achieves 99.52% detection accuracy with a false
positive rate of only 0.58%. Moreover, Peeler achieves
100% and 99.5% detection accuracy against crypto ran-
somware and screen-locker ransomware, respectively.

• We measure the detection time of Peeler against 102 sam-
ples from 34 crypto ransomware families and 104 samples
from 9 different screen-locker ransomware families, re-
spectively. Peeler took 115.3 milliseconds on average to
detect crypto ransomware. Compared to the best existing
crypto ransomware detection solution, Peeler is about
five times faster. In addition, Peeler took 16.4 seconds
on average to detect screen-locker ransomware while the
execution time of screen-locker ransomware to lock the
victim’s desktop screen completely is 302.8 seconds on
average, demonstrating that Peeler can also detect screen-

1Windows OS is becoming the most attractive targets for ransomware
writers, i.e., 87% of the existing ransomware target Windows [23]

locker ransomware at an early stage before locking a
victim’s system.

• We evaluate Peeler (without new training) against new
and unseen ransomware (34 samples) from more than
eight families, including crypto, screen-locker, and general
malware samples. Peeler successfully detected all eight
samples from crypto ransomware families and nine out
of ten samples from screen-locker ransomware families.
Additionally, Peeler also detected 9 out of 16 samples
from general malware.

II. KEY CHARACTERISTICS TO DETECT RANSOMWARE

Peeler exploits the differences in system behavioral char-
acteristics between ransomware and benign applications. We
collected kernel-level events generated by diverse ransomware
samples and benign applications and analyzed those events to
gain insights into the unique and inherent system behaviors
of ransomware. This section explores those characteristics in
detail.

A. File I/O patterns

Our analysis on collected events reveals that crypto ran-
somware samples typically encrypt a user’s file by performing
the following four steps: access the file (access), read the
content of the file (read), write the encrypted content to a
temporary memory or new file (write), and overwrite/delete the
user’s original file (overwrite/delete). For example, Figure 1
shows a sequence of file I/O events from a variant of Cerber.
These events align with the observed four file I/O steps
as follows: 1) in the access step, the ransomware sample
accesses a file (D 186.wav) with the FileCreate event; 2)
in the read step, the ransomware sample reads the content
of D 186.wav with the two Read events; 3) in the write
step, the ransomware sample writes the encrypted content
to the same file with the two Write events; and 4) in the
overwrite step, the file is finally renamed with the Rename,
FileDelete, and FileCreate events. As shown in Fig-
ure 1, the FileDelete operation removes the content of
the original file D 186.wav and FileCreate assigns a new
name 2O8nlobpEl.8cbe. We note that the File Key remains
the same for all events even though the original file’s name
and extension are changed.

XXXX   XXXX   File  FileCreate  13:25:11.325730    FFFFB203B649C160   \Desktop\Audio\D_186.wav

3496   1512   File  Read        13:25:11.325784    FFFFB203B649C160   60 395520

3496   1512   File  Read        13:25:11.325818    FFFFB203B649C160   4096   3942436

3496   1512   File  Write       13:25:11.327298    FFFFB203B649C160   110    0

3496   1512   File  Write       13:25:11.327301    FFFFB203B649C160   256    0

3496   1512   File  Rename      13:25:11.327499    FFFFB203B649C160   1512

XXXX   XXXX   File  FileDelete  13:25:11.327652    FFFFB203B649C160   \Desktop\Audio\D_186.wav

XXXX   XXXX   File  FileCreate  13:25:11.327654    FFFFB203B649C160   \Desktop\Audio\2O8nlobpEl.8cbe

PID    TID    Prov. Event       Timestamp          File Key           Event-Attributes

Fig. 1: File I/O events generated by Cerber ransomware.

We observe that most crypto ransomware samples follow
similar steps to lock a victim’s files. However, the locking
strategy adopted by each ransomware sample can be different.
For example, some families lock a file without creating a tem-
porary file, whereas others choose to lock a file via a temporary
file; some deletes the original file, whereas others decide
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to overwrite. We perform numerous trials and experiments
and observe four generic file I/O patterns that characterize
behaviors of most crypto ransomware families. We briefly
summarize our findings as follows.
1) Memory-to-File with Post-Overwrite: As shown in Fig-

ure 1, some crypto ransomware samples directly overwrite
a user’s file with its encrypted data without creating a new
file. The I/O events pattern observed is to overwrite the
encrypted data to the original file and then rename its
file name. This pattern can be observed in the following
ransomware families: Cerber, Keypass, Telsacrypt, and
Gandcrab.

2) Memory-to-File with Pre-Overwrite: This file I/O
events pattern is similar to “Memory-to-File with Post-
Overwrite” except that the original file is first renamed,
and then the encrypted data is overwritten to that file.
This pattern can be observed in samples from Locky
ransomware family. Figure 2 shows a sequence of file I/O
events generated from a sample in the Locky family. We
can see that the original file is first renamed.

3) File-to-File with Delete: Some crypto ransomware sam-
ples create a new file and copy the encrypted data of
the original file to the new file instead of overwriting the
original file itself. After completing the copy process, the
original file is finally deleted. This pattern can be observed
in the following families: InfinityCrypt, Dharma, Male-
vich, Sage, and Syrk. Figure 3 shows a sequence of file
I/O events generated from a sample in the InfinityCrypt
family. We can see that the ransomware sample reads
the file with the file key (FFFFB203AFD146F0) and
writes it (in an encrypted form) to the file with the file
key (FFFFB203AFD14160). After copying all the file
content to the new file, the original file with the file key
(FFFFB203AFD146F0) is deleted.

4) File-to-File with Rename and Delete: This file I/O events
pattern is similar to “File-to-File with Delete” except
that the new file is renamed after copying the encrypted
data of the original file to the new file. This pattern can
be observed in samples from the WannaCry ransomware
family. Figure 4 shows a sequence of file I/O events
generated from a sample in the WannaCry family. After
copying all the file content to the new file, the file is
renamed from nasa.txt.WNCRYT to nasa.txt.WNCRY.

8040   6384   File   Create     13:41:53.709433  FFFFA9028BF1A3D0   \Desktop\Audio\ D_1025.wav   0  7

8040   6384   File   Rename     13:41:53.709535  FFFFD08F7AAE0700   FFFFA9028BF1A3D0   6384

XXXX   XXXX   File   FileDelete 13:41:53.709844  FFFFD08F7AAE0700   \Desktop\Audio\D_1025.wav

XXXX   XXXX   File   FileCreate 13:41:53.709846  FFFFD08F7AAE0700   \Desktop\Audio\BDWCJ979-P6FQ.thor

8040   6384   File   Read       13:41:53.710877  FFFFD08F7AAE0700   FFFFA9028BF1A240   91484  395520

8040   6384   File   Write  13:41:53.710979  FFFFD08F7AAE0700   FFFFA9028BF1A240   91484  0

8040   6384   File   Write      13:41:53.710983  FFFFD08F7AAE0700   FFFFA9028BF1A240   91484  395776

8040   6384   File   Write      13:41:53.711170  FFFFD08F7AAE0700   FFFFA9028BB2BB80   94208  393283

PID    TID    Prov.  Event      Timestamp        FileKey            Event attributes

Fig. 2: File I/O events generated by Locky ransomware.

We show that most families from crypto ransomware follow
one of the four file I/O patterns above described.

B. Application process tree
Screen-locker ransomware does not lock user files but

instead lock users’ screens. Hence, we failed to observe the file

XXXX   XXXX   File   FileCreate 16:42:54.884727  FFFFB203AFD146F0   \Desktop\Audio\D_186.wav

XXXX   XXXX   File   FileCreate 16:42:54.926901  FFFFB203AFD14160   \Desktop\Audio\D_186.wav.0A57BC83D

3896   2720   File   Read       16:42:54.927172  FFFFB203AFD146F0   FFFF87040DE3E5F0   4096   395520

4     96   File   Read       16:42:54.927626  FFFFB203AFD146F0   FFFF87040DE3E5F0   126976 394243

3896   2720   File   Write      16:42:54.927801  FFFFB203AFD14160   FFFF87040DE3F400   4096   395776

4     96   File   Read       16:42:54.928425  FFFFB203AFD146F0   FFFF87040DE3E5F0   8192   394243 0

3896   2720   File   Write      16:42:54.928607  FFFFB203AFD14160   FFFF87040DE3F400   4096   395776

3896   2720   File   Delete     16:42:54.932136  FFFFB203AFD146F0   FFFF87040DE17360

PID    TID    Prov.  Event      Timestamp        File Key            Event-Attributes

Fig. 3: File I/O events generated by InfinityCrypt ransomware.

PID    TID    Prov.  Event      Timestamp        FileKey            Event attributes

XXXX   XXXX   File   FileCreate 10:40:44.580511  FFFFB203B69B36F0   \Desktop\FPM code\nasa.txt

3000   2556   File   Read       10:40:44.580523  FFFFB203B69B36F0   FFFF87040B60C460   8  395520

3000   2556   File   Read       10:40:44.580560  FFFFB203B69B36F0   FFFF87040B60C460   4096   394243

4   3008   File   Read       10:40:44.580705  FFFFB203B69B36F0   FFFF87040B60C460   126976 394243

XXXX   XXXX   File   FileCreate 10:40:44.580953  FFFFB203B69B3160   \Desktop\FPM code\nasa.txt.WNCRYT

3000   2556   File   Write      10:40:44.581134  FFFFB203B69B3160   FFFF87040B60E850   8  395776

3000   2556   File   Write      10:40:44.581185  FFFFB203B69B3160   FFFF87040B60E850   4  395776

3000   2556   File   Write      10:40:44.581197  FFFFB203B69B3160   FFFF87040B60E850   256    395776

3000   2556   File   Rename     10:40:45.805853  FFFFB203B69B3160   FFFF87040B60ACF0   2556

XXXX   XXXX File   FileDelete 10:40:45.805994  FFFFB203B69B3160   \Desktop\FPM code\nasa.txt.WNCRYT

XXXX   XXXX File   FileCreate 10:40:45.805996  FFFFB203B69B3160   \Desktop\FPM code\nasa.txt.WNCRY

3000   2556   File   Delete     10:42:11.557112  FFFFB203B69B36F0

Fig. 4: File I/O events generated by Wannacry ransomware.

I/O patterns described in Section II-A from screen-locker ran-
somware. However, we observed screen-locker ransomware’s
behaviors that can be distinguishable from benign applications.

Applications can spawn one or more processes if it is
needed. If a process in an application creates another pro-
cess, then the creator process is called parent process, and
the created process is called child process. We observe
that screen-locker ransomware typically spawns many child
processes compare to that of benign applications because
screen-locker ransomware should create many processes to
perform malicious tasks (e.g., connecting to C&C servers,
modifying the Windows registry, hiding files/extensions) in
parallel, resulting in large size of the application process tree.
Figure 5 shows a snapshot of the application process tree of
VirLock ransomware during its execution. VirLock is self-
reproducing ransomware that not only locks a victim’s screen
but also infects her files. Both behaviors – self-reproducing
and infecting files – were observed in the application process
tree of VirLock. We can see locker.exe is replicated at level 3
of the tree.

locker.exe

cmd.exe

xgQlwYsQ.exe

reg.exe reg.exe reg.exe cmd.exe

YSwkMSMw.exe

conhost.execonhost.exe conhost.exe conhost.exe YSwkMSMw.exe
locker.exe

xgQlwYsQ.exe

cmd.exe

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced /f /v HideFileExt /t REG_DWORD /d 1

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced /f /v Hidden /t REG_DWORD /d 2

reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System /v EnableLUA /d 0 /t REG_DWORD /f

cmd.exe reg.exe reg.exe reg.exe cmd.exe

YSwkMSMw.exe

conhost.execonhost.exe conhost.exe conhost.exe conhost.exelocker.exexgQlwYsQ.exe

xgQlwYsQ.exe

Fig. 5: Application process tree of VirLock.

To infect a victim’s files, VirLock performs stealthy mali-
cious activities to deceive victims. For instance, while creating
files in the victim’s computer, VirLock modifies the registry
in the following ways: 1) disable Windows User Account
Control (UAC), which is a feature that was designed to prevent
unauthorized changes in desktop computers; 2) hide all files
that are created on the victim’s desktop; and 3) hide all created
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file extensions. As shown in Figure 5, three child processes
(reg.exe in red color) perform the actual registry modifications.
The corresponding command line execution is shown at the
bottom of Figure 5.

In contrast, Figure 6 shows the application process trees of
six benign applications such as Chrome, Adobe Acrobat
Reader, MS Visual Studio 2019, MS Office 365
ProPlus, Spotify, and MS Outlook. Most of these
applications create far less number of spawned processes
compare to the screen-locker ransomware.

chrome.exe

AdobeARM.exe

AcroRd32.exe

RdrCEF.exe

RdrCEF.exe RdrCEF.exe chrome.exe

chrome.exe

Chrome Adobe Acrobat Reader

devenv.exe

controller.exe

servicehub.exe

PerfWatson2.exe

Settingshost.exe

MS Visual Studio 2019

conhost.exe

ptupdate.exeoutlook.exe

MS OutlookSpotify

excel.exewinword.exe

MS Office 365 ProPlus

spotify.exespotify.exe

conhost.exe

Fig. 6: Application process trees of benign applications.

Our observations on the behaviors of 104 screen-locker
ransomware samples from 9 ransomware families show that
more than 90% of samples generate a large application process
tree. A screen-locker ransomware sample spawns 44 processes
on average. On the other hand, our observations on more than
50 most popular benign Microsoft applications show that they
spawn 16 processes on average, significantly smaller to that
generated by a screen-locker ransomware sample.

C. Causality relationships between system events

We analyzed the system events generated by ransomware
samples and observed that there exist evident causality re-
lationships between some events for the operations of ran-
somware. For example, all files read must be written (en-
crypted), which naturally shows a causality relationship be-
tween Read and Write events. Furthermore, similar casu-
alties are exhibited among events collected from different
providers such as File, Process, Image, and Thread
because ransomware samples create a large number of pro-
cesses and load the corresponding DLLs to perform malicious
tasks. Such causality relationships between certain events can
be quantified by using the correlation coefficients of the events
(see Table I).

TABLE I: Correlation coefficients for some events.
Events pair Ransomware Benign applications

(File Read, File Write) 0.9433 0.3500
(Process End, Image Unload) 0.9451 0.7174
(Process Start, Image Load) 0.9476 0.7397
(Thread Start, Thread End) 0.9560 0.6585

For example, a crypto ransomware sample generates Read
and Write events regularly. As presented in Table I, there
exists a strong correlation between the number of Read

events and the number of Write events. Such a correlation
relationship may not appear in benign applications’ Read
and Write requests. Similarly, during ransomware execution,
we observe the correlation between the number of Start
processes and the number of image Load events, the correla-
tion between the number of End processes and the number
of image Unload events, and the correlation between the
number of Start threads and the number of End thread
events. These correlation coefficients are computed from the
analysis performed on 206 ransomware samples and 50 most
popular benign applications. Figure 7 shows correlation among
three pairs of events (Read and Write, Start and Load,
End and Unload). We clearly observe strong correlations
for ransomware compared to benign applications. Therefore,
Peeler uses those correlations to detect ransomware.
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Fig. 7: Correlations among some event types for ransomware
and benign applications.

III. SYSTEM DESIGN

Peeler is designed to minimize the overall damage by
ransomware attacks using two different detection modules.
Our design principle is to detect crypto ransomware attacks
as early as possible because the number of encrypted files
(i.e., the victim’s damage) can be increased if the crypto
ransomware attack detection is delayed. Therefore, for crypto
ransomware, our design principle is to detect it immediately
by using a simple pattern matching first as soon as the first
file is encrypted. We believe that the sacrifice of one file is our
best effort scenario in the view of dynamic analysis because
Peeler leverages file I/O event patterns that can be generated
when a file is encrypted by crypto ransomware. In contrast,
we propose a different approach based on machine learning
models to detect ransomware attacks concerning screen-locker
ransomware (or sophisticated crypto ransomware that is not
detected by a pattern matching module) because we need to
analyze such cases with additional features carefully.

A. Overview

Figure 8 illustrates the overall design of Peeler. Peeler
monitors system events continuously to detect ransomware
attacks in real-time and uses them to perform ransomware
detection.

Peeler has two main ransomware detection modules: 1) file
I/O pattern matcher and 2) machine learning-based classifier.

4



Applications

IO schedular

Peeler 

(ETW)

System drivers

Physical devices

File IO patterns 

matching

Construct  

application 

process tree 

Events (Process, 

Image, File, and 

Thread)

User mode

Kernel mode

Pattern 

matched?

Attack detection

Features

Score fusion

System events monitor 

(File, Image, Process, 

Thread)

Model

(Multinomial logistic 

regression)

Model 

(SVM-RBF)

Features

 File IO events 

Ransomware

detected

File I/O pattern 

matcher
ML-based classifier

Fig. 8: Overview of Peeler.

The file I/O pattern matcher takes kernel-level file I/O events
as input and looks for suspicious file I/O patterns that can
be shown for ransomware. Once a pattern that characterizes
ransomware behavior is detected, Peeler generates an alert.
Machine learning-based classifier module extracts features
from application process tree and system events providers
(Process, Image, File, and Thread). The application
process tree features are used to build a multinomial logistic
regression model, whereas the system event features are used
to build a Support Vector Machine (SVM) model. For detec-
tion, the scores from both classification models are fused as
an ensemble approach, and then detection is performed.

Algorithm 1 enlists all the key steps required for ran-
somware detection. A window size W and a list of regular
expressions (REcrypt) are given as inputs to Algorithm 1. As
shown in Figure 8, the system events monitor collects kernel
events and forwards them to two modules (the file I/O pattern
matcher and the machine learning-based classifier) in parallel.
There are two differences between these modules: 1) file I/O
pattern matcher consumes events generated from the File
provider to identify suspicious file I/O patterns for focusing
on crypto ransomware alone. Whereas ML-based classifier
utilizes events from all four providers (File, Process,
Image, and Thread) and application process tree features
to detect both crypto and screen-locker ransomware. 2) File
I/O pattern matcher performs analysis on a per-event basis
(Step 2), whereas ML-based classifier accumulates events for
W seconds (Step 7) and then processes them in a batch (Step
8). If both modules do not detect suspicious activities by
ransomware, Peeler continuously monitors the system (Step
11).

B. System events monitor

Peeler provides a module called system events monitor,
which is used to collect kernel events in real-time. Peeler relies
on the following event providers [24]: Process, Image,
File, and Thread. The data obtained by the system events
monitor are in the form of a continuous sequence of events ti.
Each event has a schema describing the type of data contained
in the event payload. An event is represented as:

Algorithm 1 Overall Process of Peeler
Input: W and REcrypt

1: while true do
2: System events monitor receives an event from ETW.

/* Input events to both detectors in parallel.*/
3: if event is from File provider then
4: CryptoMatcher = FileIOPatternMatcher(event, REcrypt)
5: if CryptoMatcher then
6: Raise the alert and halt the process using PID.
7: IncomingEvents = Accumulate all events in a W seconds window.
8: MLClassifierLabel = ML-basedClassifier(IncomingEvents)
9: if MLClassifierLabel then

10: Raise the alert and halt the process using PID.
11: else Keep on monitoring the system.

ti =< PID, TID, Prov., EType,Eattrs >,

where

PID is a process identifier,
TID is a thread identifier corresponding to the process PID,
Prov. is a provider name,
EType is an event name,
Eattrs is a set of attributes of the event Ename.

Our system events monitor leverages a tool called Event
Tracing for Windows2 (ETW) [24] for collecting events. ETW
is an efficient kernel-level tracing solution that allows us to
capture and consume system events in real-time. ETW consists
of three main components : controller, consumer and provider.
The controller starts and stops event tracing sessions. Each
provider has its own set of events. Consumers retrieve events
from providers. The providers and events used in Peeler are
listed in Table II.

TABLE II: Providers and events used in Peeler.
Provider Event Event schema

Common attributes Provider-specific event attributes

Process Start, End PID, TID, Prov., Event, Timestamp SessionId, ParentId
ImageFileName, CommandLine

File
Read, Write PID, TID, Prov., Event, Timestamp FileKey, FileObject, IoSize
Rename, Delete PID, TID, Prov., Event, Timestamp FileKey, FileObject
FileCreate, FileDelete PID, TID, Prov., Event, Timestamp FileObject, FileName

Thread Start, End PID, TID, Prov., Event, Timestamp ParentId

Image Load, Unload PID, TID, Prov., Event, Timestamp ImageSize, FileName

To implement the system events monitor in Peeler, we
used an open-source project krabsetw [25], which is a C++
library that simplifies interactions with ETW. We modified
krabsetw to collect the events only needed for Peeler. The
events collected are used for file I/O pattern matcher and
machine learning-based classifier in parallel.

C. File I/O pattern matcher

To effectively detect suspicious file I/O patterns, Peeler
relies on regular expressions – a sequence of suspicious file
I/O events is represented by a regular expression RE. Table III
shows file I/O events and abbreviations used in regular expres-
sions. File I/O patterns and corresponding regular expressions

2ETW was first introduced in Windows 2000 and is now built-in to all
Windows OS versions
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are presented in Table IV. In the regular expression, the ∗
symbol represents zero or more repetitions of the immediately
preceding sub-expression; the + symbol represents one or
more repetitions, while the ? symbol represents the zero or
one repetition of the preceding. For example, the expression
of WR∗ indicates that a Write operation might be followed
by zero or more Read operation(s).

TABLE III: File I/O events.
File I/O Event Abbr. in regular expression

Read, Write R, W
Rename, Delete N, D
FileCreate, FileDelete C, D
Create C

TABLE IV: Regular expressions for the file I/O patterns of
crypto ransomware.

File I/O patterns Regular expression

Memory-to-File with Post-Overwrite C[R+W+R∗]+NDC
Memory-to-File with Pre-Overwrite CNDC[R+W+R∗]+

File-to-File with Delete C+[R+C?W+R∗]+D
File-to-File with Rename and Delete C+[R+C?W+R∗]+NDC

Algorithm 2 is composed of three main stages for detecting
crypto ransomware. The input to the Algorithm is events from
file I/O provider. An event is specified as event = <PID,
EType, FileObject, FileName, FileKey> and with a set of
regular expressions, REcrypt. PID and EType refer to the
process identifier and event type, respectively. FileObject is a
unique key assigned to every file, whereas FileName contains
the name of a file with full path. FileKey is an identifier that
is used to find the file on which an event is performed. For
example, the event schema for Read and Write (see Table II)
does not contain FileName attribute. In order to obtain the
file name, the FileKey attribute of the Read/Write event is
matched with the FileObject attribute of the FileCreate
event.

1) Preparing the data: The continuous stream of incoming
file I/O events are first processed such that they are added
to a separate list based on the file they are operating on.
Whenever a user’s file is accessed (i.e., FileCreate event
is received), an events list FileEventsList is created and the
corresponding event (FileCreate) with respective attributes
is added to that list. All subsequent file I/O operation events
(such as Read, Write, Rename, Delete, FileCreate,
and FileDelete) on that file are added to its FileEventsList
(Step 1 – 6 in Algorithm 3).

However, it is challenging to accurately add all file
I/O events corresponding to a user’s file to its respective
FileEventsList. Because a single file may have multiple
FileObject keys and vice versa. For example, as shown in
Figure 3, the FileObject keys for Read and Write events
on the file D_186.wav are not the same, but the actual
file on which the operations are performed is the same. To
ensure that all events associated with a file are fully recorded,
Peeler leverages both FileObject and FileName attributes to
accurately identify a user’s file.

Algorithm 2 FileIOPatternMatcher.
Input: event = <PID, EType, FileObject, FileName, FileKey> and REcrypt

Output: Benign and Ransomware

Stage 1: Preparing the data
1: if EType is ‘FileCreate’ then
2: if FileObject and FileName are newly observed then
3: Create events list FileEventsList for the newly observed file.
4: Add event to FileEventsList.
5: else add event to respective file’s FileEventsList.

Stage 2: File I/O patterns detection
6: if the number of unique ETypes in the FileEventsList is equal or greater than four

then
7: Extract Etypes sequence from FileEventsList.
8: if Etypes sequence matched to at-least one of the regular expressions in REcrypt

then
9: Flag the process PID in event.

10: Ransomware = True
11: else continue

Stage 3: Filtering false positives.
12: if FilePath are different in FileEventsList’s events then
13: Benign = True
14: if PIDs in FileEventsList’s events are not same then
15: Benign = True
16: if file extension in FileEventsList’s events is in [‘.bak’, ‘.log’, ‘.TMP’,

‘.jtx’, ‘.journal’, ‘.tmp’, ‘.db-journal’, ‘.dbx-journal’] then
17: Benign = True

2) File I/O pattern matcher: Suspicious file I/O patterns
are detected by analyzing the sequence of events in the
list FileEventsList corresponding to a file. If the number of
unique ETypes is equal to or more than four (Step 6 in
Algorithm 3), the events in the list are analyzed for suspicious
patterns. Peeler enforces the four unique events constraint to
reduce unnecessary computational overhead because at least
four unique event types are required to encrypt a user file
(see Figures 1–4). As presented in Table IV, suspicious file
I/O patterns for crypto ransomware are represented in the
form of regular expressions. If the sequence of incoming
events in FileEventsList is matched with one of those regular
expressions, Peeler reports this sequence as the evidence of
crypto ransomware activity for a security warning.

We note that the Memory-to-File operations can be distin-
guished from the File-to-File operations by using the FileOb-
ject keys. When the same file is overwritten, we observe that
the FileObject key remains the same for all file I/O events,
e.g., the sequence of events to encrypt the file D 186.wav are
shown in Figure 1 for Cerber ransomware. For File-to-File
operations, multiple files associated with FileObject keys are
needed. That is, in this case, the file I/O events from multiple
files are accumulated into the same FileEventsList list.

3) Filtering false positives: We observe that some benign
applications may generate ransomware-like file I/O patterns.
For example, some benign applications may overwrite Win-
dows OS’s Activation Tokens file (tokens.dat), which can lead
to false positives because it generates file I/O events that look
similar to Memory-to-File patterns. We applied the following
three heuristics to reduce the possibility of such false-positive
cases (see Stage 3 in Algorithm 2):

• If FilePaths in FileEventsList are not directing to the same
file, this is ignored because the file encrypted must be in
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the same location.
• All the file I/O events must be performed by the same

process (i.e., the same PID) with exception for the system
and explorer.exe processes. For example, event lists in
Figures 3 and 4 show that system process (PID = 4) is
involved. Similarly, explorer.exe is also system process
that may assist other processes in performing tasks.

• Peeler ignored the file I/O operations on temporary files.
In our current implementation, such temporary files can
be simply identified with their file extensions, such as bak,
tmp, log, TMP, jtx, journal, db-journal, and dbx-journal.

D. Machine learning-based classifier

Peeler uses two different machine learning-based (ML-
based) classifiers with application process tree features, and
system event features to detect ransomware samples that
cannot be detected by the file I/O pattern matcher. Algorithm 3
enlists all the steps for ML-based classifiers. The input to the
algorithm is a set of events accumulated over W seconds
window. In our current implementation, we empirically set
W = 5 to optimize the speed-accuracy tradeoff. Features are
extracted to build two machine learning models (Step 1–4 in
Algorithm 3). The built machine learning models are then used
to detect ransomware attacks (Step 5–7 in Algorithm 3).

Algorithm 3 ML-basedClassifier.
Input: IncomingEvents
Output: Benign and Ransomware

Stage 1: Feature sets extraction and model building.
1: FVMLR = extract application process tree features from IncomingEvents (see

Table V).
2: FVSV M = extract system events features from IncomingEvents (see Table V).
3: M1 = Build ML Multinomial logistic regression model with FVMLR feature set.
4: M2 = Build ML SVM-RBF model with FVSV M feature set.

Stage 2: Attack detection.
5: Extract feature set vectors for test samples.
6: Test FVMLR and FVSV M features on models M1 and M2, respectively.
7: Fuse scores from models and provide the class label (either benign or

ransomware) as output.

1) Building the first classifier with the application process
tree features: Windows applications are typically descended
from the parent process called explorer.exe. Therefore, all
applications’ processes share explorer.exe as their parent pro-
cess. As discussed in Section II-B, we observed that several
screen-locker samples spawn a significantly larger number of
child processes compared to benign applications. Based on
this observation, Peeler constructs a machine learning model
using the application process tree features. Peeler specifically
extracts the following features from the application process
tree: the number of processes, the number of unique processes,
the number of threads created by processes, the maximum
depth level of the tree, and the number of leaf nodes in
the tree. For the first classifier using the feature set FVMLR

(see Table V), we selected a multinomial logistic regression
(MLR) model because we do not assume linear relationships
among the features in FVMLR [26] and MSR produces the
best performance with those features.

2) Building the second classifier with the system event
features: As discussed in Section II-C, Peeler leverages four
providers’ (File, Process, Image, and Thread) events
exhibiting casualties. In total, the following four pairs of events
are used: (Read, Write), (Start, Load), (End, Unload),
and (Start, End). To capture these casualties simply, Peeler
extracts frequency features (see Table V) and train an SVM
model based on feature set FVSVM for classification. We
selected SVM with RBF kernel because it is lightweight and
produces the best accuracy results with FVSVM .

TABLE V: Feature extraction.
Feature set Feature Model

FVMLR

# of processes

MLR
Sum of threads from processes
Maximum depth level of process tree
# of leaf nodes
# of unique process names

FVSVM

# of process start

SVM-RBF

# of process end
# of DLL image loads
# of DLL image unloads
# of file reads
# of file writes
# of threads start
# of thread end

3) Attack detection: Peeler uses two classification models
(MLR and SVM-RBF), and finally decides the classification
outcome by fusing their scores. We note that MLR and SVM-
RBF are constructed with different feature sets – MLR is
trained with FVMLR while SVM-RBF is trained FVSVM (see
Table V). The scores from the two models are fused by taking
their average for detection.

IV. DATASET COLLECTION

We aimed to collect a ransomware dataset containing di-
verse ransomware families rather than similar ransomware
variants. Therefore, we collected 206 ransomware samples
from 43 families (see Section IV-A). Also, we collected benign
applications (see Section IV-B) containing crypto-like and
screen-locker-like benign applications (see Appendix A) to
evaluate Peeler’s robustness against false positives.

A. Ransomware
We first obtained 3,040 malware samples from VirusTo-

tal [27], malware repository [28], malwares [29], and other
online communities. However, we excluded many malware
samples from our final dataset for experiments. First, we
found that many samples were not actual ransomware samples,
although they were classified as ransomware by some vendors
in VirusTotal. Therefore we discarded such samples. This
finding is consistent with the observation in the previous
work [16]. Second, ransomware often needs to interact with
command-and-control (C&C) servers to perform their mali-
cious activities. However, several ransomware samples did not
often work appropriately because their corresponding C&C
servers were inactive. Also, some sophisticated malware sam-
ples can detect the analysis environment and remain inactive
to evade detection [30]. Therefore, we finally used 206 active
ransomware samples that perform their activities correctly.
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1) User environment and data collection: We used Virtual-
Box 6.1 [31] to create and manage the computing environment
locally for experiments. Rather than using artificially generated
data, we used a real user’s data running on the Windows 10
64Bit operating system (a copied version of real user data) to
set up a benign user’s environment realistically. Multimedia
files (e.g., bmp, jpeg, png, and mp4), Microsoft office
documents (e.g., docx, xlsx and pptx files), and other
important files (e.g., cpp, py, pdf and wav files) were copied
to various directories in different locations. We note that those
files are typically most attractive targets for ransomware.

Each ransomware sample was executed and then manually
labeled by each family type. We ran each ransomware sample
for ten minutes or until all user files were encrypted. It took
more than 60 days to run all samples and collect data. We only
considered those samples that encrypted user files or locked
desktop screens. If no files were modified, we excluded them
from our dataset. In total, 206 ransomware samples from 43
distinct ransomware families (see Table VI) were collected.
Out of 43 families, 34 (102 samples) were from crypto, and 9
(104 samples) were from screen-locker types of ransomware.

TABLE VI: Ransomware families, types, and samples.
no. Family Type Samples no. Family Type Samples

1 Cerber Crypto 33 23 Petya Crypto 1
2 Sodinokibi Crypto 14 24 Satana Crypto 1
3 GoldenEye Crypto 12 25 Shade Crypto 1
4 Sage Crypto 5 26 Syrk Crypto 1
5 Locky Crypto 5 27 TeslaCrypt Crypto 1
6 Dharma Crypto 3 28 ucyLocker Crypto 1
7 dotExe Crypto 3 29 Unlock92 Crypto 1
8 Troldesh Crypto 1 30 Vipasana Crypto 1
9 WannaCry Crypto 3 31 Xorist Crypto 2

10 Da Vinci Code Crypto 1 32 Malevich Crypto 1
11 CryptoShield Crypto 1 33 Jigsaw Crypto 1
12 CryptoWire Crypto 1 34 Adobe Crypto 1
13 District Crypto 1 35 Virlock.Gen.5 Screen 83
14 Gandcrab Crypto 1 36 LockScreen.AGU Screen 12
15 GlobeImposter Crypto 1 37 Alphabet Screen 2
16 Hexadecimal Crypto 1 38 EgyptianGhosts Screen 1
17 InfinityCrypt Crypto 1 39 Lockey-Pay Screen 1
18 IS (Ordinpt) Crypto 1 40 Blue-Howl Screen 1
19 Keypass Crypto 1 41 ShellLocker Screen 1
20 Lockcrypt Crypto 1 42 DerialLock Screen 1
21 Pack14 Crypto 1 43 Trojan.Ransom Screen 1
22 PocrimCrypt Crypto 1 -

Total samples: 206, crypto = 102, screen-locker = 104

2) Diversity in our dataset: Table VI presents a list of
ransomware families that are used in our evaluation. To
the best of our knowledge, this is the most comprehensive
dataset containing diverse ransomware families. According to
previous work [32], [16], the use of diverse families is more
important than the number of ransomware samples from a
few families for evaluating the performance of ransomware
detectors. For instance, building a model on 1,000 Locky (and
its variants) ransomware samples should prove no more useful
than building a model on just one Locky sample [32]. Scaife
et al. [16] confirmed that due to the homogeneous nature
of file I/O behavior among samples within each family, a
small number of representative samples in each family are
sufficient to evaluate the detection performance. It is because
the core behavioral traits shown by crypto ransomware in
encrypting data attack does not change from one variant to
the other or from one family to the other. Since our study
covered more than eight times the number of families from
previous study [33], and more than two times the number

of families covered in studies [15], [16] and there was not
much diversity within families, there was little need to collect
additional samples.

B. Benign applications

We also collected the dataset for popularly used applications
that are typically installed on a benign user’s computer. In
addition to popularly used applications, we also considered
several benign applications that could resemble ransomware in
certain behavioral aspects. The reason is to investigate false
positive rates when benign applications potentially resemble
ransomware. We divide the benign dataset into three main
categories targeting various types of ransomware: 1) benign
applications with file I/O patterns resembling crypto ran-
somware, 2) benign applications with process tree resembling
screen-locker ransomware, and 3) commonly used benign
applications.

1) Benign applications resembling crypto ransomware:
Benign applications performing encryption or compression
might generate file I/O patterns similar to crypto ransomware
that could result in false positives. To evaluate Peeler against,
we collected data from several crypto-like benign applica-
tions, listed in Appendix A. There are key differences in
file I/O patterns generated by encryption/compression tools
compared to crypto-ransomware. Firstly, unlike ransomware
incurring a massive number of repeated file I/O patterns, the
encryption/compression tools operate on a limited number
of files only. Secondly, the original user files remain intact,
i.e., not overwritten or deleted, even after compression or
encryption is performed. It is, therefore, doubtful that benign
applications show ransomware file I/O patterns. Thirdly, unlike
crypto ransomware that encrypts user files arbitrarily, benign
applications create a dedicated process that needs sophisticated
inputs from the OS to complete the task. For instance, the
compression tool 7-zip takes several parameters to specify
target files. Each tool in Appendix A is run twice – for
compression and decompression, on a given set of files to
collect data.

2) Benign applications resembling screen-locker ran-
somware: We collected the dataset containing applications that
spawn many child processes to evaluate Peeler’s robustness
against false positives. We found that certain benign applica-
tions such as Pycharm and Visual Studio create many spawned
processes that may resemble screen-locker ransomware. The
list of benign applications is shown in Appendix B. We
collected data by running each application individually.

3) Commonly used benign application: We also collected
user’s system usage data under normal conditions while inter-
acting with commonly used applications. A user runs many
different applications at the same time. For example, the user
read a document using Adobe Acrobat Reader, switched to the
internet browser to view online reviews about a product, and
then used Adobe Acrobat Reader again. Our goal here is to
analyze system events generated in an interleaved manner from
commonly used benign applications. The collected data is for
around 12 hours of computer usage. During data collection,
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the user interacted with multiple applications from the list of
benign applications in Appendix A.

V. EVALUATION

We demonstrate Peeler’s performance in detection accuracy,
detection time, and CPU/memory overheads.

A. Experimental setup

For evaluation, we used the dataset described in Section IV.
For training, 20% of both screen-locker ransomware and
benign applications randomly are selected. We used a small
training dataset (only 20% of the entire dataset) for the
following reasons: 1) the size of a training set is typically
limited in the real world; 2) we want to increase the number of
testing samples as many as possible for making Peeler robust
against unseen ransomware samples; 3) we want to reduce the
size of model for quick training. All the remaining ransomware
and benign samples (i.e., 80% of the total samples) are used
for testing purposes.

B. Detection accuracy

Table VII shows the summary of Peeler’s detection accu-
racy. Overall, Peeler achieved 99.52% accuracy with a false
positive rate of only 0.58%. Since we used only 20% of
applications selected randomly for training, all performance
statistics are averaged after 100 runs to mitigate biases in
training and testing datasets. Similarly, Peeler achieved high
precision and F1 score, which are greater than 99%.

TABLE VII: Peeler’s detection accuracy.
Metric Accuracy(%)

Accuracy 99.52%
True positive rate 99.63%
True negative rate 99.42%
False negative rate 0.37%
False positive rate 0.58%
Precision 99.41%
Recall 99.63%
F1 score 99.52%

1) False positive analysis: Minimizing false positives is
essential to develop practically useful malware detectors be-
cause excessive false positives can annoy users and undermine
the system’s effectiveness. We evaluate Peeler’s performance
against three different types of benign application scenarios
(see Table VIII):

TABLE VIII: Peeler’s false positive analysis for different types
of benign applications.

Scenario TNR (%) FPR (%) FNR (%)

Crypto-like benign apps 98.27 1.72 0.96
Locker-like benign apps 99.5 0.31 0.5
Commonly used benign apps 99.78 0.21 0.87

All ransomware 99.42 0.58 0.37

Crypto ransomware-like benign applications. For
behavior-based crypto ransomware detection solutions, a sig-
nificant challenge is not to detect benign applications having
compression or encryption capabilities because their system
behaviors might be similar to crypto ransomware.

We deeply investigated 11 different applications using
compression or encryption operations on a large number of
files like crypto ransomware (see Appendix A). We observed
that event sequences of some benign applications such as
ZipExtractor and BreeZip are quite similar to those of typical
crypto ransomware, but they do not restrict access to files via
encryption, unlike crypto ransomware.

Table VIII shows that Peeler correctly detects 98.27% with
a false positive rate of 1.72% even against crypto ransomware-
like benign applications.

Screen-Locker-like benign applications. As described
in Section II-B, screen-locker ransomware typically spawns
many child processes. Therefore, we examine how Peeler’s
performance can be degraded with benign apps hav-
ing such behaviors. For this analysis, we investigated
34 most popular applications from Microsoft’s Windows
Store (https://www.microsoft.com/en-us/store/apps/windows)
(see Appendix B) and selected 18 applications showing such
behaviors. Table IX presents the applications’ process tree-
related feature (FVMLR) values of three representative benign
applications showing such behaviors. We observe that Py-
charm and Visual Studio spawned 140 and 46 child processes,
respectively. Interestingly, Chrome spawns 42 processes, but
the depth of its applications’ tree is one, and the number of
threads created by these processes is 1,480. We examined the
results of Peeler with those 18 applications.

TABLE IX: Benign applications’ process tree features.
Application # processes Depth # leaf nodes # unique processes # threads

Pycharm 140 4 70 11 993
Visual Studio 46 4 29 21 568
Chrome 42 1 41 2 1,480

Table VIII shows that Peeler correctly detected 99.5% with
a false positive rate of 0.31% even though these benign appli-
cations show screen-locker-like behavior in terms of spawned
processes. The reason for this detection is because Peeler also
considers the other set of features (FVSVM ), which are related
to system events.

Commonly used benign applications. We also evaluated
Peeler’s performance with commonly used benign applications
such as Microsoft Office, Adobe Acrobat Reader, email client,
and instant messengers, as presented in Sectoin IV-B.

We show that Peeler correctly detects all benign activities
performed by a user achieving a detection rate of 99.78%.
The false positive and true negative rates under normal system
usage are 0.21% and 0.87%, respectively. Note that the overall
detection accuracy in all three scenarios is above 99%.

2) False negative analysis: The false negative rate for
ransomware detection is another important metric to evaluate
the effectiveness of Peeler. Table X shows that the overall
false negative rate is above 0.37%. The false negative rates
for crypto and screen-locker ransomware are 0% and 0.5%,
respectively.

3) Model-specific detection accuracy.: We constructed
Peeler by building multiple detection components (file I/O
pattern matcher and machine learning-based classifier). Here
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TABLE X: Peeler’s false negative rate analysis.
Ransomware TPR (%) FPR (%) FNR (%)

Crypto 100 0.8 0
Screen-locker 99.50 0.31 0.50

All ransomware 99.63 0.58 0.37

we show the effectiveness of each component in detecting
ransomware. Table XI and XII show the evaluation results
of both components, respectively.

TABLE XI: File I/O pattern matcher’s performance.
Ransomware TPR (%) FPR (%) FNR (%) Prec. (%) Rec. (%) F1 score (%)

Crypto 95.19 0 4.81 100 95.19 97.53
Screen-locker 33.33 0 66.66 100 33.33 50.00

All ransomware 65.50 0 34.5 100 65.50 79.15

Table XI shows that the file I/O pattern matcher achieves the
detection rate of 95.19% with the false rate of 0% in detecting
crypto ransomware; however, it is not effective in detecting
screen-locker ransomware.

Table XII shows that the machine learning-based classifier
works well in detecting both crypto and screen-locker ran-
somware. The machine learning-based classifier achieves more
than 98% detection accuracy with less than 2% false rate in
detecting both types of ransomware attacks. The high detection
rate of the machine learning-based classifier can be attributed
to the feature vectors (FVMLR and FVSVM). However, to boost
the detection time, we can first apply the file I/O pattern
matcher and then use the machine learning-based classifier
only when the file I/O pattern matcher fails to detect.

TABLE XII: Machine learning-based classifier’s performance.
Ransomware TPR (%) FPR (%) FNR (%) Prec. (%) Rec. (%) F1 score (%)

Crypto 98.45 1.84 1.54 98.24 98.45 98.29
Screen-locker 99.5 0.31 0.50 99.68 99.50 99.59

All ransomware 99.05 1.9 0.94 98.19 99.05 98.59

Each component can work as an alternative and com-
plementary detection method to the other component. For
instance, the file I/O pattern matcher failed to detect some
crypto ransomware samples such as Hexadecimal, Cryptowire,
CryptoShield, and CryptoLock, but the machine learning-
based classifier successfully detected them.

C. Detection time

For crypto ransomware, the detection time refers to the
time interval between the end of the detection and the end
of encryption on a file by a process, that is, how long it takes
Peeler to detect the ransomware attack after a ransom sample
encrypts a file. We excluded the time to be taken for the file
encryption because that time can be varied depending on the
file size.

We measured the detection time of Peeler against 102 sam-
ples from 34 different crypto ransomware families. Figure 9
shows that Peeler can detect over 70% of samples within
115 milliseconds with the mean time of 115.3 milliseconds,
demonstrating that Peeler outperforms existing crypto ran-
somware detection solutions in detection time. Peeler can

promptly detect crypto ransomware with a simple, regular
expression-based pattern matching, unlike other existing so-
lutions relying on complicated file activity (e.g., identifying
encryption operations based on entropy computation) analysis
or machine learning models.

These detection time results demonstrate the superiority of
Peeler compared with existing crypto ransomware detection
solutions. Cryptolock [16] detects crypto ransomware after 10
files are encrypted. Similarly, Mehnaz et al. [12] presented
a solution which takes on average 8.87 seconds to detect
malicious processes.
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Fig. 9: CDF of the ransomware detection time for 102 crypto
ransomware samples.

We also measured the detection time of Peeler against 104
samples from 9 different screen-locker ransomware families.
For screen-locker ransomware, the detection time refers to
the time interval between the end of the detection and the
start activity by a ransomware process. Figure 10 shows
that Peeler, on average, took 16.4 seconds to detect screen-
locker ransomware while the execution time of screen-locker
ransomware to lock user’s desktop screen completely is 302.8
seconds on average, demonstrating that Peeler can detect
screen-locker ransomware at a very early stage that prevents
an attacker from locking a victim’s system.
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Fig. 10: Probability density function of detection times for 104
screen-locker ransomware samples with mean (µ) and standard
deviation (σ).

D. CPU and memory overheads

We evaluate the performance of Peeler with respect to
CPU and memory overheads. Since Peeler intercepts low-level
kernel events and then analyzes them to detect ransomware
attacks, its performance overheads in CPU and memory can
typically be changed depending on the system’s workload.
For instance, we observe that if computationally intensive
tasks are running, the overheads of Peeler inherently increase
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because Peeler should frequently intercept a high number of
kernel events generated from such computationally intensive
processes.

TABLE XIII: CPU and memory overheads of Peeler.

Workload CPU (%) Memory (MB)

Mean Std. Mean Std.

Low 2.7 2.0 9.8 0.3

Normal 4.9 2.2 9.8 0.4

High 15.8 3.9 11.3 1.9

Our experiments were conducted on a computing device
equipped with two Intel Core(TM) i5-7300U (2.60GHz) CPUs
and 8GB RAM, running 64-bit Windows 10 Enterprise edi-
tion operating system. Our CPU and memory usage results
were measured based on this environment. We considered
the three workload conditions as follows: Low, Normal, and
High workload conditions. Under the low workload condition,
Peeler is only running in the background and continuously
collecting system events and writing them to a log file. Under
the normal workload condition, we additionally performed
the following tasks: 1) drafting an MS Word document; 2)
using Chrome for browsing online material; and 3) reading
a document using Adobe Acrobat Reader. Under the high
workload condition, we additionally ran a CPU intensive
algorithm as a background process. We note that an anti-
malware program called CylanceProtect and default Windows
services were continuously running in the background for all
workload conditions.

Table XIII shows CPU and memory usage of Peeler. We
observe that mean CPU usage and the standard deviation
are 4.9% and 2.2%, respectively, under the normal workload
condition.

Table XIII also shows that mean memory usage is around
9.8MB under the low or normal workload conditions, which
is quite stable and has less variation (standard deviation is
0.4MB). Under the high workload condition, the average
CPU usage of Peeler significantly increases to 15.8% with
a standard deviation of 3.9% while its average memory usage
slightly increases to 11.3MB memory with a standard devia-
tion of 1.9MB.

E. Robustness against unseen ransomware families

To test Peeler against unseen ransomware samples, we
additionally collected new and unseen ransomware samples
after three months from the first experiments. A total of 34
samples from more than eight distinct unseen ransomware
families are tested. We used the previously constructed Peeler
without retraining. All samples tested in this experiment are
manually verified from VirusTotal to confirm their family and
type.

The detection results of Peeler against those samples are
presented in Table XIV. Peeler was able to correctly detect all
unseen crypto ransomware samples while the detection rate
for screen-locker was degraded by about 9% compared to the
detection rate in Table X. Interestingly, Peeler can also detect

TABLE XIV: Detection of unseen ransomware and malware.
Type Family File extension Sample Detection

Crypto

Matrix .CORE 3

8/8Fox .FOX 3
Crpren .af46 1
MedusaLocker .encrypted 1

Screen-locker
VirLock.Gen.8 - 6

9/10Trojan.Killproc - 2
VirLock.16 - 2

Malware (non ransomware) Backdoor.Generic - 2 9/16Unknown - 14

9 out of 16 conventional malware samples even though those
samples do not have ransomware capabilities. For example,
our investigation revealed that Backdoor.Generic is a malware
family that enables attackers to control infected computers
remotely to create large groups of zombie computers (botnets),
which are then used for malicious purposes without the user’s
knowledge. We surmise that those malware samples have some
common behaviors that can be observed from ransomware.

VI. DISCUSSION AND LIMITATIONS

A. Comparison with existing ransomware detection solutions

As mentioned in Section I, there are many existing methods
to detect ransomware attacks. However, since most existing
solutions used their own dataset for evaluation, and their
source code is not opened, we do not directly compare Peeler
with those solutions. Alternatively, we compare Peeler with
those solutions according to their experimental results reported
in their papers. Table XV shows a summary of the comparison
results.

TABLE XV: Comparison with existing approaches.
Method TPR (%) FPR (%) Files lost Screen-locker? Samples/families Real-time

Redemption [6] 100 0.8 5 × 677/29 ×
CryptoLock [16] 100 0.03 10 × 492/14 ×
UNVEIL [15] 96.3 0 - X 2121/ - ×
REDFISH [14] 100 - 10 × 54/19 ×
RWGuard [12] - 0.1 partial recovery × - /14 X
Elderan [11] 93.3 1.6 - × 582/11 ×
CM&CB [34] 98 Vary - × 8/ - ×
RansHunt [35] 97 3 - × 360/20 ×
ShieldFS [9] 100 0.038 - × 383/11 ×
Peeler 99.63 0.58 1 X 206/43 X

We can see that the ransomware detection rates overall
ranges from 93% to 100%. However, it is important to note
that the number of ransomware samples/families used for
evaluation is different for each approach. CryptoLock [16],
Redemption [6], REDFISH [14], and ShieldFS [9] achieved
100% detection rates, but those solutions were tested on 14, 29,
19, and 11 ransomware families only, respectively. In contrast,
Peeler was tested against 43 distinct ransomware families,
including both crypto and screen locker ransomware, and still
achieved a 99.63% detection rate. For the false positive rate
with benign applications, Peeler achieved 0.58% FPR, which
would be comparable with the other solutions.

For crypto ransomware detection, one of the most critical
evaluation metrics is the number of user files lost before a
ransomware sample is detected. Peeler detects ransomware
immediately after a single file alone is encrypted, indicating
that Peeler outperforms other solutions that reported the results
in the number of lost files before detection.
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From Table XV, we can see that only two solutions (Peeler
and UNVEIL [15]) considered the detection of screen-locker
ransomware. However, Peeler’s detection time (16.4 seconds
on average) would significantly be faster than UNVEIL. Al-
though Kharaz et al. [15] did not report the exact detection
time of UNVEIL, we surmise that UNVEIL would take longer
detection time because it needs to capture screenshots of a
victim’s desktop periodically, and then compute the similarity
between the captured images.

B. Secure implementation of Peeler

Peeler runs in a privileged kernel mode with adminis-
trative rights because it needs to collect kernel-level events
from four main kernel providers (File, Process, Image,
and Thread). Therefore, the integrity of Peeler can be
securely protected against malicious processes running in
the user mode. However, if we consider powerful attackers
(e.g., rootkit-based ransomware) with the root privilege, we
additionally need to consider deploying a kernel protection
mechanism to protect Peeler against attackers. Recently, sev-
eral techniques (e.g., real-time kernel protection (RKP) [36])
have been proposed to protect the kernel code and objects
from unauthorized modifications. With such a secure kernel
protection mechanism, we can implement Peeler as a Windows
service running on the kernel.

C. Parameters optimization and extension to other computing
environments

Peeler is flexible to adjust the window size parameter
W for the machine learning-based classifier. However, the
optimal selection of W should be carefully selected with two
fundamental issues: detection accuracy and detection time. We
empirically observed that there is a trade-off between detection
accuracy and detection time. If we use a long time period for
W, Peeler’s detection accuracy would be improved, although
the use of such a long time period results in more chances
for ransomware to lock a victim’s files or system. On the
other hand, if we use a short time period for W, Peeler’s
detection accuracy would be degraded while Peeler’s detection
time can be reduced. Based on this trade-off relationship, we
empirically set W = 5 seconds in all the experiments in this
paper. However, W can be optimized according to conditions
of the environment in which Peeler will be used.

In order to extend Peeler to other computing environ-
ments such as Linux or Android, two aspects are needed
to be considered: platform-depended system events and key
ransomware behavioral characteristics. The later remains
platform-independent because the key behavioral characteris-
tics of ransomware remain almost the same no matter which
platform they target. However, system events for other com-
puting environments need to be carefully analyzed to extend
Peeler to these environments. For instance, the suspicious file
I/O patterns and corresponding regular expressions should be
updated to reflect platform-dependent system events.

D. Limitations

In our experiments, the tested benign applications are only
a part of a massive number of benign applications. Therefore,
we can still have a chance to encounter (unknown) benign
applications that generate suspicious file I/O patterns that
might result in false positives. For instance, when Windows
OS creates a backup file tokens.dat.bak from the file
of tokens.dat, we found that the sequence of kernel-level
file I/O events generated from a benign process can lead
to a false positive result from the file I/O pattern matcher.
To avoid such false positive cases, Peeler currently uses a
whitelist containing well-known system file extensions (such
as .bak, .log, .TMP, .jtx, .journal, .db-journal,
and .dbx-journal).

If the regular expressions used in Peeler are exposed to
attackers, they can try to generate different file I/O patterns
that are not matched to all the regular expressions. For
example, a ransomware sample can perform unnecessary and
dummy file operations such as Rename or FileCreate
repeatedly to generate unknown file I/O patterns such as
CNDCNDC[R+W+R∗]+. Therefore, Peeler’s regular ex-
pressions should be generally extended to cover such cases
with dummy operations and should be confidentially protected.
We note that the current regular expressions are the minimal
representations for suspicious file I/O patterns. Moreover, a
sophisticated attacker may misuse Peeler’s three heuristics,
such as the use of whitelist for system file extensions. There-
fore, we need to consider developing more advanced and
generic heuristics to prevent such adaptive attacks so that we
deploy Peeler in real-world environments. Fortunately, we note
that the machine learning-based classifier in Peeler can be
effectively used to detect such adaptive ransomware attacks
as a complement to the file I/O pattern matcher.

VII. RELATED WORK

We categorize the literature regarding ransomware detection
into three groups: 1) crypto ransomware detection techniques
that are mainly based on certain behavioral indicators (e.g.,
file I/O event patterns), 2) machine learning-based approaches
that build models by leveraging system behavior feature, and
3) decoy-based approaches that deploy decoy files and monitor
if ransomware samples to tamper with the decoy files.

Crypto ransomware detection. There were several pro-
posals to monitor file I/O request patterns of applications to
detect crypto ransomware. Kharraz et al. [15] studied crypto
ransomware families’ file I/O request patterns and presented
a dynamic analysis-based ransomware detection system called
UNVEIL. UNVEIL detected 13,647 ransomware samples from
a dataset of 148,223 general malware samples. Kharraz et
al. [6] proposed another ransomware detection system using
file I/O patterns, achieving a 100% detection rate with 0.8%
false positive on 677 samples from 29 ransomware families.
Scaife et al. [16] also presented a system called CryptoDrop
that detect ransomware based on suspicious file activities, e.g.,
tampering with a large number of file accesses within a time
interval. According to the experimental results, the number of
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lost files is ten on average. Moratto et al. [14] proposed a
ransomware detection algorithm with a copy of the network
traffic, without impacting a user’s activities. Their proposed
system achieved a 100% detection rate with 19 different
ransomware families after the loss of ten files. Although the
idea of using file I/O patterns is not new, Peeler is specifically
designed to detect crypto ransomware’s suspicious activities
with kernel-level file I/O events to reduce the detection time
while most of the existing solutions require high-level file
I/O activities (e.g., encryption) translated from kernel-level
file I/O events. Peeler only focuses on detecting suspicious
kernel-level file I/O event sequences that should contain file
operations (i.e., overwrite or delete) on the original file.

Another approach is to recover the files encrypted by crypto
ransomware. Continella et al. [9] proposed ShieldFS that
monitors file system operations to build an anomaly detection
model using processes’ system behaviors. When a process de-
viates from the model for benign processes, the file operations
performed by the suspicious process are transparently rolled
back. However, ShieldFS requires shadowing files whenever
they are modified, thereby incurring a significant overhead
in space. Kolodenker et al. [37] proposed a system called
PayBreak, which intercepts the system’s crypto functions,
identifies the keys used for the functions, and stores them.
The stored keys are used later to decrypt the files encrypted
by ransomware attacks. However, PayBreack can decrypt files
only for the ransomware families that use system provided
crypto functions. Huang et al. [17] proposed FlashGuard, a
ransomware-resistant Solid State Drive (SSD) system, which
provides a recovery functionality at the firmware-level al-
lowing quick and effective recovery from crypto ransomware
without relying on explicit backups.

Most existing solutions have been developed, focusing
on detecting crypto ransomware only. To the best of our
knowledge, Peeler is the first unified system that works for
both crypto and screen-locker ransomware. Peeler uses a
hybrid approach that leverages both file I/O pattern-based
rules and machine learning models for accurate and efficient
detection of crypto and screen-locker ransomware. We note
that our hybrid approach is different from UNVEIL [15] in
that UNVEIL employs two completely different systems for
detecting crypto and screen-locker ransomware, respectively,
while Peeler’s machine learning-based classifier is used to
detect both ransomware types at the same time.

Machine learning based ransomware detection. RW-
Guard [12] is a machine learning-based crypto ransomware
detection system. RWGuard achieved a 0.1% false positive rate
incurring a 1.9% CPU overhead with 14 crypto ransomware
families. RWGuard leverages the features about processes’ I/O
requests and changes performed on files because RWGuard
was mainly designed to detect crypto ransomware only. Unlike
RWGuard, however, we additionally considered the causal-
ity relationships among system events and the applications’
process tree properties to detect both crypto and screen-
locker ransomware. Sgandurra et al. [11] proposed EldeRan,
another machine learning approach that builds a model using

system activities such as API invocations, registry event, and
file operations that are performed by applications. EldeRan
achieved a 93.3% detection rate with a 1.6% false alarm rate
with 582 samples from 11 ransomware families. Hirano et
al. [38] and Al-rimy [21] proposed behavior-based machine
learning models for ransomware detection. Hirano et al. se-
lected five-dimensional features that were extracted both from
ransomware and benign applications’ I/O log files. Nieuwen-
huizen [32] proposed another behavioral-based machine learn-
ing model using a feature set that quantifies the behavioral
traits for ransomware’s malicious activities. Cohen et al. [8]
analyzed memory dumps taken from virtual machines where
ransomware samples are executed. They developed machine
learning algorithms based on the meta-features extracted from
the memory analysis. The proposed machine learning model
achieved an F-score of 97.6% with five ransomware families.

Decoy files based ransomware detection. Decoy tech-
niques [12], [13], [9] have also been frequently proposed to
detect ransomware attacks. For example, Gomez et al. [13]
developed a tool called R-Locker using honey files to trap the
ransomware. When file operations are performed on honey
files by a process, the process is detected and completely
blocked because benign processes do not perform any file op-
erations on honey files. However, if decoy files are generated,
which look different from real user files, sophisticated ran-
somware samples ignore decoy files [12]. Moreover, it is also
unclear how those solutions would detect some ransomware
families (e.g., Petya) that affect predefined system files only.

VIII. CONCLUSION AND FUTURE WORK

We propose a new effective and efficient solution called
Peeler to detect ransomware attacks using their system behav-
iors. Peeler is built on the I/O pattern matcher and machine
learning models to improve the detection accuracy and reduce
the detection time. Most crypto ransomware can be detected
by the I/O pattern matcher efficiently; the crypto ransomware
that cannot be detected by the I/O pattern matcher or screen-
locker ransomware can be detected by the machine learning
models more accurately.

To show the effectiveness of Peeler, we evaluate its per-
formance with 43 ransomware families containing crypto ran-
somware and screen-locker ransomware. In the experiments,
Peeler achieved 99.52% accuracy with a false positive rate of
only 0.58%. Moreover, Peeler is efficient in detecting crypto
ransomware – over 70% of crypto ransomware samples can be
detected within 115 milliseconds. Although Peeler’s detection
time (16.4 seconds on average) is relatively slower for screen-
locker ransomware, it is still sufficient to detect it because it
typically takes a longer time (302.8 seconds on average) to
lock a victim’s system entirely.

As future work, we plan to extend our approach to the
detection of other types of malware (e.g., cryptojacking [39]).
To achieve this, we also plan to leverage other providers from
Windows such as PowerShell and Network, and analyze
kernel-level events generated by new malware types.
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APPENDIX A
BENIGN APPLICATIONS RESEMBLING CRYPTO

RANSOMWARE IN BEHAVIOR

TABLE XVI: Benign applications generating a large number
of file I/O events for compression, encryption or shredder.

Tool Application Operation Version

Compression

7-zip Compression 19.007-zip Decompression
Winzip Compression 24Winzip Decompression
Winrar Compression 5.80Winrar Decompression
BreeZip Compression -BreeZip Decompression
Alzip Compression 11.04Alzip Decompression
PeazipWinrar Compression 7.1.1PeazipWinrar Decompression

Encryption

AESCrypt Encryption 310.00AESCrypt Decryption
AxCrypt Encryption -AxCrypt Decryption

Shredder
Eraser Delete 6.2.0.2986
Ccleaner Delete -
Windows Delete Delete -

APPENDIX B
BENIGN APPLICATIONS SPAWNING A LARGE NUMBER OF

CHILD PROCESSES

TABLE XVII: Benign applications that may create process
tree resembling locker ransomware.

Type Application Version Locker-like?

Office

MS Word 16.0.11929.20436 ×
MS Powerpoint 16.0.11929.20436 ×
MS Excel 16.0.11929.20436 ×
MS Outlook 16.0.11929.20436 X
Trio Office: Word, Slide, Spreadsheet - X

Development

Pycharm 11.0.3+12-b304.56 amd64 X
Matlab R2019a X
Visual Studio C++ 2019 community version X
Android Studio 191.6010548 X

Tools

Adobe Acrobat Reader 20.006.20034 X
Adobe Photoshop Express 3.0.316 ×
PhotoScape 3.7 ×
Cool File Viewer - ×
PicArt Photo Studio - ×
Paint 3D - ×

Cloud and Internet

Dropbox - ×
Googledrive - ×
Internet Explorer 11.1039.17763 X
Google Chrome 80.0.3987.132 X
Remote Desktop - ×

Messenger

Telegram 1.9.7 ×
WhatApp 0.4.930 X
Skype 1.9.7 ×
Facebook Messenger - X

Document
Wordpad - ×
Notepad - ×
OneNote 16001.12527.20128.0 ×

Media player
VLC 3.0.8 ×
Netflix 6.95.602 ×
GOM Player 2.3.49.5312 ×

Miscellaneous

Spotify - X
KeePass Password manager 1.38 ×
Discord - ×
Facebook - ×
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